







# **User manual**

# Robot Control Module REV 800 Installation Manual

**SAMES KREMLIN SAS -** 13, Chemin de Malacher - 38240 MEYLAN - FRANCE Tel. 33 (0)4 76 41 60 60 - www.sames-kremlin.com

All communication or reproduction of this document, in any form whatsoever and all use or communication of its contents are forbidden without express written authorisation from **SAMES KREMLIN**.

The descriptions and characteristics mentioned in this document are subject to change without prior notice.

### © SAMES KREMLIN 2015



**SAMES KREMLIN** SAS is registered with the Ministry of Labour as a training institution.

Throughout the year, our company offers training courses in the operation and maintenance of your equipment.

A catalogue is available on request. Choose from a wide range of courses to acquire the skills or knowledge that is required to match your production requirements and objectives.

Our training courses can be delivered at your site or in the training centre at our Meylan head office.

Training department: Tel. 33 (0)4 76 41 60 04

E-mail: formation-client@sames-kremlin.com

**SAMES KREMLIN** SAS operating manuals are written in French and translated into English, German, Spanish, Italian and Portuguese.

The French version is deemed the official text and Sames will not be liable for the translations into other languages.

## Robot Control Module REV 800 Installation Manual

| 1. Health and Safety Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2. Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                    |
| 3. Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                    |
| 3.1. Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>. 10<br>. 10<br>. 11<br>11<br>. 12                              |
| 3.5.3. Inputs. 3.5.4. Outputs. 3.5.5. 24VDC Power Supply. 3.6. General Installation Diagram 3.6.1. Robot 3.6.2. Interface installation.                                                                                                                                                                                                                                                                                                                                                                                                                         | 13<br>14<br>15<br>16<br>17                                           |
| 4. Connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 18                                                                 |
| <ul> <li>4.1. Ground Connection</li> <li>4.2. Connecting the Mains Supply to the Module</li> <li>4.2.1. Electrical Wiring Diagrams</li> <li>4.2.2. Control Module</li> <li>4.3. Connections to the RFV 2000 Robots</li> <li>4.3.1. Electrical Wiring Diagrams</li> <li>4.3.2. Control Module</li> <li>4.4. Connections to the Spray Triggers</li> <li>4.4.1. Electrical Wiring Diagrams</li> <li>4.4.2. Control Module</li> <li>4.5. Interface to the Plant Control System</li> <li>4.5.1. Electrical Wiring Diagrams</li> <li>4.5.2. Control Module</li> </ul> | . 18<br>. 18<br>. 19<br>. 19<br>. 20<br>. 23<br>. 25<br>. 26<br>. 26 |
| 5. Spare parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 32                                                                 |

### 1. Health and Safety Instructions

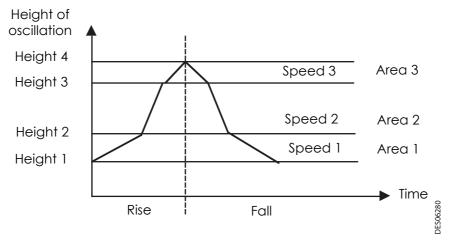
This user manual contains a link un lien to the following user manual:

• see RT Nr 6364 for the electrical systems.



WARNING: This equipment may be hazardous when not used following the safety rules described in this manual:

- The REV 800 module is intended to be installed in a control cabinet made by
   SAMES KREMLIN which provides the basic level of sealing of the product from its environment (water splashes, pollution from powder and from dust...). Any utilisation other than prescribed by SAMES KREMLIN remains the sole responsability of the end user (like when used outside of a control cabinet, or installed in an electrical cabinet not made by SAMES KREMLIN).
- The REV 800 module must be installed outside of ATEX zones.
- The REV 800 module must be installed away from the powder polluted area.
- The REV 800 module cannot be installed out of doors.
- Ambient temperature in the vicinity of the REV 800 modules must be lower or equal to 40 C degrees.
- The REV 800 module must be connected to the shop's earth via a green/yellow wire of an at least 6mm<sup>2</sup> section.
- The REV 800 module must not be used without its cover.
- The REV 800 module must not be modified from its original design.
- Only SAMES KREMLIN spare parts, or a repair carried out by the repair department of SAMES KREMLIN will ensure and ascertain the safe operation of the REV 800 module.
- Switch off the electrical power to the REV 800 module prior to pulling off its connectors.
- The "booth ventilation ON" information must be connected to the REV 800 module in order to allow spraying only while the booth ventilation is turned on. Should this connection not be established, the operation of the system falls entirely under the responsibility of the end user.
- The touch-screen of the REV 800 module is designed for use with clean or protected hands. There is a protective film to be installed on the screen area. The warranty does not cover pollution of the touch-screen of the REV 800 module by powder paint.
- The REV 800 module is exclusively designed to operate with one or two SAMES KREMLIN RFV reciprocators, which must be installed in an ATEX zone.
   Any other utilisation of the reciprocator falls under the sole responsibility of the end user.
- The REV 800 module is designed to be used only in conjunction with the potentiometers installed by SAMES KREMLIN on the RFV series reciprocators. This whole electrical system is certified by SAMES KREMLIN, and guarantees that the potentiometer can be used in an ATEX zones. The zener barrier of this system must be installed at the rear of the control module REV 800 on a rail provided for this purpose and connected.
- The thermal probe of the RFV's motor must be connected to the REV 800 module in order to guarantee the utilisation of the RFV in an ATEX zone.
- Any intervention on the REV 800 module under voltage has to be made only by personal authorized and formed to the electrical interventions.


### 2. Description

The REV 800 control module is capable of controlling up to two **SAMES KREMLIN** RFV 2000 robots.

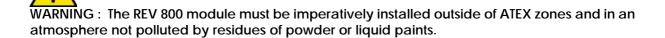
It is used to control the up and down vertical oscillation that has been programmed for each of the robots to suit the characteristics of the part being processed.

The motion of each robot may be different.

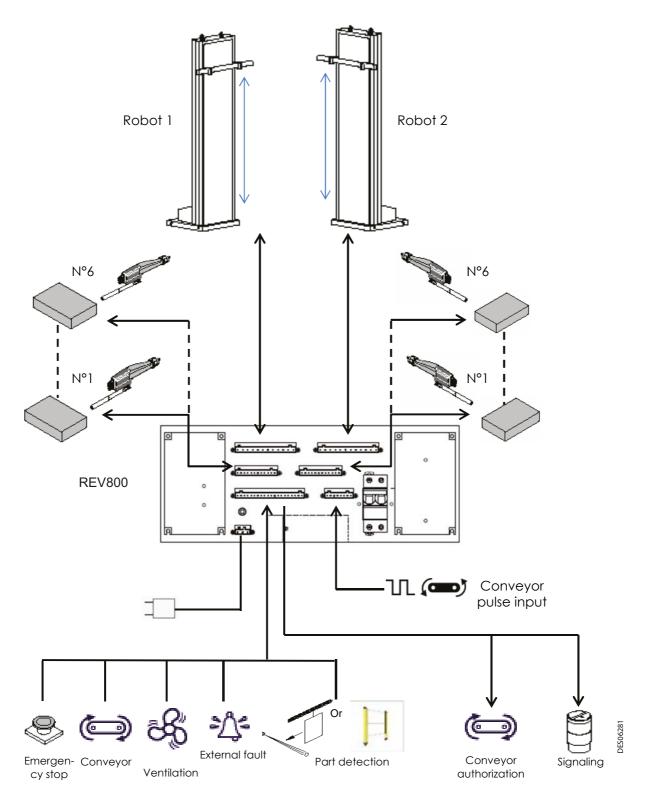
In the case of using the module without part detection or with a simple detection, this motion is divided into three distinct zones. Each of these zones may be programmed to a different oscillation speed with the spray enabled or disabled.



In the case of using the module with a part detection by cells barrier, a scanning area can be divided into 6 spray areas. A spray authorization is associated with each area.


The module also controls the triggering of up to twelve **SAMES KREMLIN** spray guns or sprayers via a **SAMES KREMLIN** spray module. These may be used with either liquid paint or powder.

The module is easy to interface to a plant control system using the following functions:


- Automatic spraying when parts are detected by a sensor or photocell or a cells barrier.
- Input provided for an emergency stop switch if required.
- External fault input.
- Ventilation running input
- Conveyor running input.
- Conveyor encoder pulse input.
- Conveyor control output.
- OK module output.

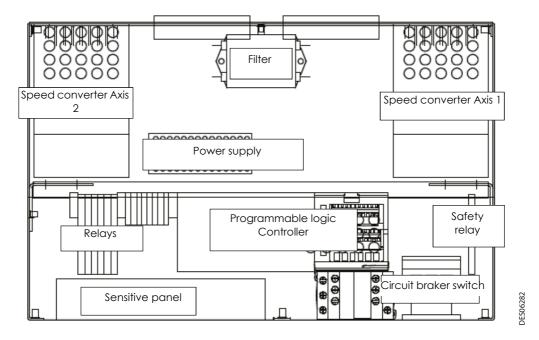
The REV 800 is a 19 inch rack-mountable unit intended to be housed in a **SAMES KREMLIN** FCR or SLR modular cabinet together with various **SAMES KREMLIN** 19 inch spray modules.

It may also be used as a stand-alone unit, housed in a **SAMES KREMLIN** installation cabinet.



## Block diagram of the system




Note: see § 4 page 18 for the details of the connections.

### 3. Installation

### 3.1. Description

The architecture of the REV 800 module is based on a programmable logic controller, a touch-sensitive operator control panel and two speed converters.

### Layout (from above)



The Programmable Logic Controller (PLC) consists of the following 2 modules:

- CPU module with integrated digital logic and analogic signal inputs and outputs.
- Additionnal relays output module

The digital logic signal inputs and outputs are used primarily for:

- Interfacing with the plant control system.
- Controlling the triggering of the spray guns or sprayers.
- Transmitting data specific to the module.

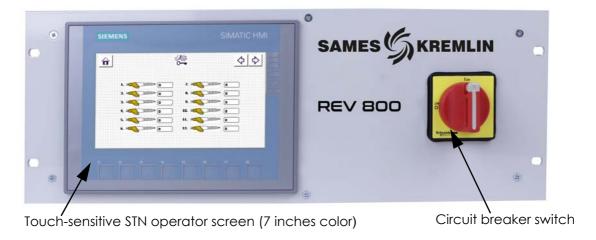
The analog inputs are used to acquire positional data from the rotational potentiometers on each axis. The analog outputs are used to transmit a speed demand signal to the speed converters.

### The speed converters are used to:

- Supply a reference voltage to the rotational potentiometers.
- Drive the induction motor actuators on the RFV 2000 robots.

**The graphical Touch Panel** operates together with the Programmable Logic Controller to provide the Man-Machine Interface for the module.

A 24 VDC power supply unit supplies power to the various PLC modules.


### The relay block is used to:

- Interface the triggering signals to the spray guns or sprayers.
- Exchange data specific to the module.

**The circuit breaker switch** is used to isolate the robots during maintenance operations by cutting the power supply to the RFV 2000 robots.

A protective **circuit breaker** (accessible in the rear face) is included in the power supply in order to protect the module.

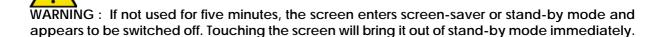
### Front panel



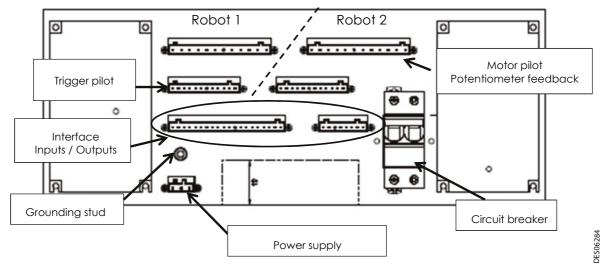
All interfacing between the operator and the module is provided by the graphical Touch Panel connected to the Programmable Logic Controller:

- 7 inches LCD TNT widescreen, backlit by CCFL. The screen is easy to read even under difficult lighting conditions.
- Resistive analog touch-sensitive screen, controlled by a finger, non-pointed object or glove.
- Strong plastic case, protected to IP65 (front panel) and IP20 (rear panel).

The lockable circuit breaker switch is used to isolate the robots during maintenance operations by cutting the power supply to the speed converters. The switch may be locked using a padlock.


A reset by a validation button at the operator screen is required to restore power to the converters.

WARNING: Even when the switch is in position 0, power continues to be supplied to the operator control panel. However, it is not possible to drive the movement of the robots or trigger the sprayers electrically (stop mode).


When the switch is activated to 1 and the power is reset on the HMI device, installation passes in manuel or automatic mode.

Before putting the swith on position 1 and validating the power on the HMI, the operator must ensure that nobody is in the working area of the installation.

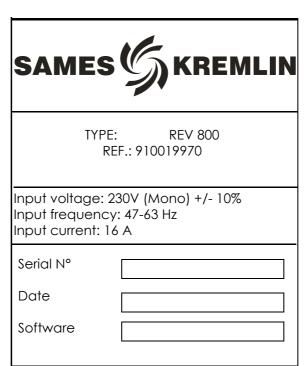
The non respect of this instruction is under the responsibility of the user.



### Rear view



Connections are made to the system via connectors with spring-loaded terminals. Ferrules should not be used on the connecting wires as this method provides a tight vibration-resistant connection.


The connectors are locked in position by means of catches. These are easy to use and no tools are required.

Each individual connector can only be inserted in one orientation.

Each female connector is fitted with a handle and cable clamp preventing any tension on the individual wires as the connecter is withdrawn.

The power and speed converter connectors have a pitch of 7.5 mm. The control signal connectors have a pitch of 5.08 mm.

## Signalitic plate of the equipment



### 3.2. Operating Conditions

| Ambient temperature | < 40°C                                                      |
|---------------------|-------------------------------------------------------------|
| Relative humidity   | < 85% non-condensing                                        |
| Altitude            | < 1000m (Speed converters must be derated above this level) |
| Environment         | Non-explosive                                               |

## 3.3. Cleaning and Maintenance of the Touch Panel

The control panel screen is designed to operate with the minimum of maintenance. Regular maintenance is limited to cleaning the screen.

### Cleaning the screen

### Preparation

The control panel screen should be cleaned periodically.

Clean the screen using a damp cloth and clean from the screen edge inwards. Switch off the equipment before cleaning the screen. This will eliminate any chance of selecting unwanted operations.

### Clean display

If the equipment includes a 'Clean display' function, you may clean the screen while the timer bar is active without the risk of selecting any other functions. All input from the screen is disabled during this period.

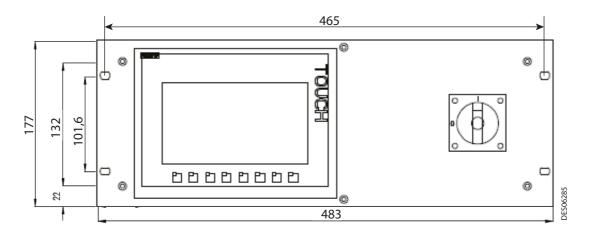
### Protective film

An optional protective film is available for the screen (P/N # 110002029). This film prevents scratching or damage to the screen.

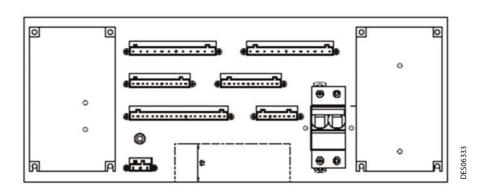
### Cleaning products

Dampen the cloth with water and a mild detergent (washing-up liquid) or a foam product specially designed for cleaning screens. Spray the cleaner onto the cloth, never directly onto the screen. Do not use aggressive solvents or abrasive cleaners.

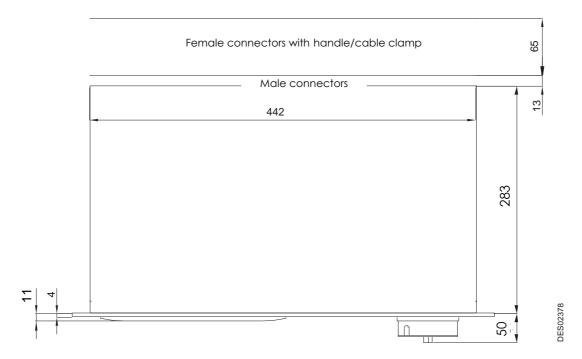
WARNING: Touch Panel should not be put in contact with liquid products or powders otherwise there is a risk of damaging it.


### 3.4. Mechanical Characteristics

## 3.4.1. General Characteristics of the Module


| Rack mounted     | 19 inch                          |
|------------------|----------------------------------|
| Height           | 4 U                              |
| Protection index | IP20 (case), IP 54 (front panel) |
| Weight           | 13.8 kg                          |

## 3.4.2. Dimensions of the Module


## Front panel



## Rear panel



### View from above



## 3.5. Electrical Characteristics

## 3.5.1. Characteristics of the Module

| Input voltage        | 230 single phase (± 10 %) |
|----------------------|---------------------------|
| Frequency range      | 47-63 Hz                  |
| Input current (max.) | 16 A                      |

## 3.5.2. Connectors

| Connectors with a pitch of 7.5 mm |                             |  |
|-----------------------------------|-----------------------------|--|
| Maximum voltage                   | 300 V                       |  |
| Maximum current                   | 15 A                        |  |
| Nominal conductor size            | 0.08 to 2.5 mm <sup>2</sup> |  |

| Connectors with a pitch of 5.08 mm |                             |  |
|------------------------------------|-----------------------------|--|
| Maximum voltage                    | 300 V                       |  |
| Maximum current                    | 10 A                        |  |
| Nominal conductor size             | 0.08 to 2.5 mm <sup>2</sup> |  |

## 3.5.3. Inputs

## 3.5.3.1. Integrated Digital Logic Signal Inputs

| General                                                                       | 24 V Inputs                                                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Туре                                                                          | P/N (CEI type 1 in P mode)                                        |
| Nominal voltage                                                               | 24 VDC at 4 mA (typ.)                                             |
| Maximum permissible continuous voltage                                        | 30 VDC                                                            |
| Transient voltage                                                             | 35 VDC for 0.5 seconds                                            |
| Logical '1' (min.)                                                            | 15 V at 2.5 mA                                                    |
| Logical '0' (max.)                                                            | 5 VDC at 1 mA                                                     |
| Input delay                                                                   | Selectable (0.2 to 20 ms)                                         |
| Current consumption                                                           | 4 mA / used input                                                 |
| Isolation(side field to logic)                                                | 500 VAC for 1 minute                                              |
| Isolation group                                                               | 1                                                                 |
| HSC input frequency (max.)<br>Logic 1 = 15-26 V for conveyor<br>encoder input | 20Khz                                                             |
| Maximum number of inputs simultaneously at '1'                                | All at 55°C in horizontal, at 45°C in vertical                    |
| Cable length (max.)                                                           |                                                                   |
| Shielded<br>Unshielded                                                        | 500 m (normal inputs), 50 m (HSC inputs)<br>300 m (normal inputs) |

## 3.5.3.2. Integrated Analog Inputs

| General                         |                               |
|---------------------------------|-------------------------------|
| Туре                            | Voltage (single-ended)        |
| Full scale range                | 0 to 10 V                     |
| Data word format (full scale)   | 0 to 27648                    |
| Overshoot range                 | 10.001 to 11.759 V            |
| Data word overshoot range       | 27649 to 32511                |
| Overflow range                  | 11.760 to 11.852 V            |
| Data word overflow range        | 32512 to 32767                |
| Resolution                      | 10 bits                       |
| Maximum withstand voltage       | 35 V                          |
| Smoothing                       | None, Weak, Medium, or Strong |
| Noise rejection                 | 10, 50 or 60 Hz               |
| Impedance                       | ≥ 100 kΩ                      |
| Isolation (side field to logic) | None                          |
| Accuracy (25 °C / 0 to 55 °C)   | 3.0% / 3.5% of full scale     |
| Cable lenght (meters)           | 100 m, shielded twisted pair  |

## 3.5.4. Outputs

## 3.5.4.1. Relay Outputs

8 additional relays module (piloting of triggers 3 to 6 for each robot)

| General                                  |                                    |
|------------------------------------------|------------------------------------|
| Туре                                     | 8 Relays,                          |
| Type                                     | change over contact relay          |
| Voltage range                            | 5 to 30 VDC or 5 to 250 VAC        |
| Current (max)                            | 2A                                 |
| Surge current (max.)                     | 7 A with contacts closed           |
| Lamp load (max.)                         | 30 W DC / 200 W AC                 |
| On state contact resistance              | $0.2~\Omega$ max. when new         |
| Overload protection                      | no                                 |
| Isolation (field side to logic)          | 1500 VAC for 1 minute              |
| isolation (field side to logic)          | (coil to contact)                  |
| Isolation resistance                     | 100 MΩ min. when new               |
| Isolation between open contacts          | 750 VAC for 1 minute               |
| Isolation group                          | 8                                  |
| Switching delay (max)                    | 10 ms                              |
| Switching frequency (max)                | 1 Hz                               |
| Lifetime mechanical (without load)       | 10 000 000 open/close cycles       |
| Lifetime contact at rated load           | 100 000 open/close cycles          |
| Maximum number of outputs simultaneously | All at 55°C in horizontal, at 45°C |
| at '1'                                   | in vertical                        |
| Cable length (max.)                      |                                    |
| Shielded                                 | 500 m                              |
| Unshielded                               | 150 m                              |

**Block relay** (piloting of triggers 1 to 2 of each robot and of echange data specific to the module)

## Floating contact

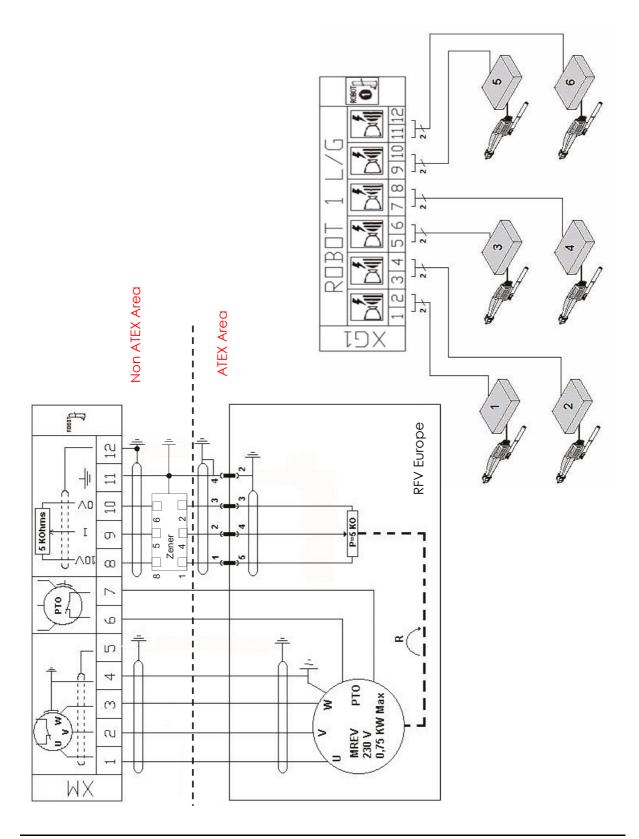
| Maximum switched voltage | 250/250 VAC                   |
|--------------------------|-------------------------------|
| Maximum current          | 6 A                           |
| Maximum switched power   | 1500 VA AC                    |
| Nominal load (230 VAC)   | 400 VA                        |
| Minimum switched load    | 10 VDC / 10 mA, 24 VDC / 1 mA |
| Contact material         | AgNi                          |

| Mechanical life                     | 5 000 000 cycles |
|-------------------------------------|------------------|
| Response time (pull-in / release)   | 8 / 4 ms         |
| Dielectric strength (contacts open) | 1000 VAC         |

## 3.5.4.2. Integrated transistor Logic Signal Outputs

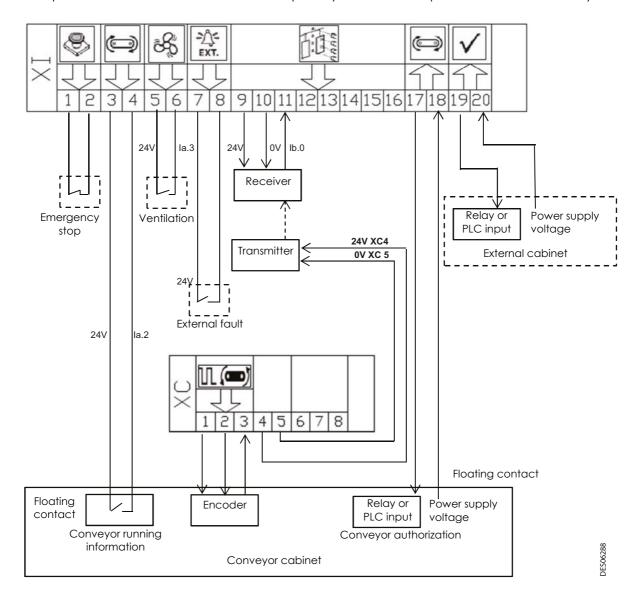
| General                                         | 24V Outputs                                |
|-------------------------------------------------|--------------------------------------------|
| Туре                                            | Solid state - MOSFET (sourcing)            |
| Voltage range                                   | 20.4 to 28.8 V                             |
| Surge current (max.)                            | 8 A for 100 ms                             |
| Logic 1 signal (min.)                           | 20 VDC at maximum current                  |
| Logic 0 signal (min.)                           | 0.1 V with a 10 kΩ load                    |
| Current (max.)                                  | 0.5 A                                      |
| Leakage current per point (max.)                | 10 μΑ                                      |
| Lamp load (max.)                                | 5 W                                        |
| On state resistance (contact)                   | 0.6 Ω max                                  |
| Overload protection                             | no                                         |
| Isolation (field side to logic)                 | 500 VAC for 1 minute                       |
| Isolation group                                 | 1                                          |
| Switching delay (max)                           | 1/3 µs (Qa.0 to Qa.3)                      |
| Off to on / On to off                           | 50/200 µs (for the other)                  |
| Maximum number of outputs simultaneously at '1' | All to 55°C in horizontal, at 45°C in ver- |
| Cable length (max.)                             |                                            |
| Screened                                        | 500 m                                      |
| Unscreened                                      | 150 m                                      |

## 3.5.4.3. Integrated analog Outputs


| General                        |                              |
|--------------------------------|------------------------------|
| Туре                           | Current                      |
| Full scale range               | 0 to 20 mA                   |
| Full scale range (data word)   | 0 to 27648                   |
| Overshoot range                | 20.01 to 23.52 mA            |
| Data word overshoot range      | 27649 to 32511               |
| Overflow range                 |                              |
| Data word overflow range       | 32512 to 32767               |
| Resolution                     | 10 bits                      |
| Output drive impedance         | $\leq$ 500 $\Omega$ max.     |
| Isolation (fied side to logic) | None                         |
| Accuracy (25 °C / 0 to 55 °C)  | 3.0% / 3.5% of full scale    |
| Settling time                  | 2 ms                         |
| Cable lenght (meters)          | 100 m, shielded twisted pair |

3.5.5. 24VDC Power Supply Switched mode power supply, protected against short circuit, overload and overvoltage.

| Output voltage  | 24 VDC |
|-----------------|--------|
| Tolerance       | ±1%    |
| Maximum current | 3.2 A  |
| Power           | 76.8 W |
| Efficiency      | 88.5 % |


## 3.6. General Installation Diagram

## 3.6.1. Robot



### 3.6.2. Interface installation

Example of installation with a detection of part by cell and an input coder for the conveyor:



17

### 4. Connections

### 4.1. Ground Connection

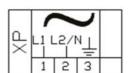
WARNING: This equipment must be connected to a suitable earth!

Failure to earth this equipment correctly may give rise to dangerous conditions.

A green/yellow earth wire of sufficient size must be connected to the grounding stud fitted and labeled as such on the rear panel of the module. The minimum recommended cable size is  $2.5 \, \text{mm}^2$ .

### 4.2. Connecting the Mains Supply to the Module

### 4.2.1. Electrical Wiring Diagrams

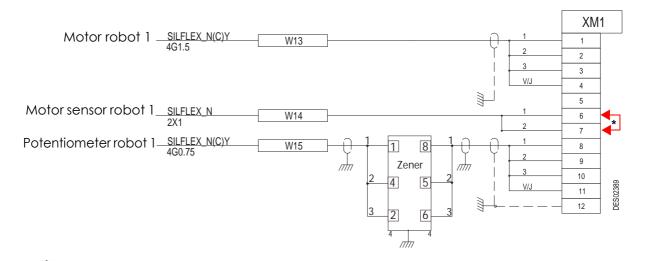



The mains voltage must be 230 Volts single-phase  $\pm 10\%$ . The supply frequency must be between 47 and 63 Hertz. The supply must be rated at a minimum of 16 Amps.

The supply cable recommended by **SAMES KREMLIN** (P/N # E4PCAL580), (length 2,5 m) is equipped with a french standard plug.

## 4.2.2. Control Module

| XP terminal strip | Power                |
|-------------------|----------------------|
| Pin 1             | L1                   |
| Pin 2             | L2/N                 |
| Pin 3             | Earth (green/yellow) |

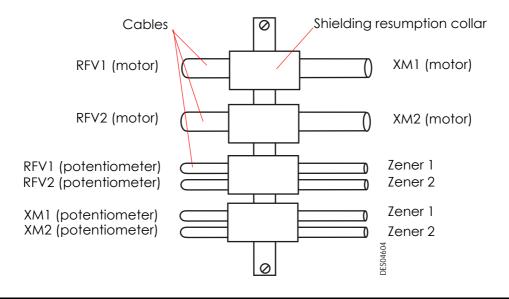



### 4.3. Connections to the RFV 2000 Robots

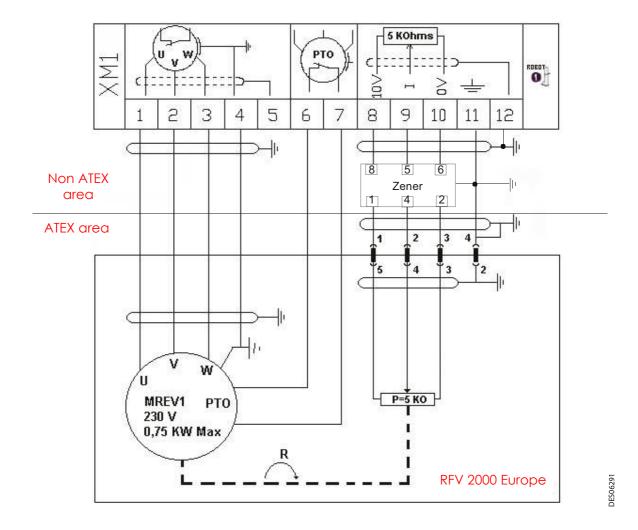
### 4.3.1. Electrical Wiring Diagrams

## **Motor with Integrated Thermal Sensor**

The data signal from the sensor is connected in series with an integrated safety relay to cut the power on the speed convertors.




WARNING: (\*) A bridge between terminals 6 and 7 is always installed on the thermal probe of the second robot. It is necessary to remove it when a second motor is connected.


The following cables are recommended:

| Motor         | 4 G 1.5 mm <sup>2</sup> screened  | Ref: 1411222 |
|---------------|-----------------------------------|--------------|
| Thermal probe | 2 x 1 mm <sup>2</sup>             | Ref: 1411223 |
| Potentiometer | 4 G 0.75 mm <sup>2</sup> screened | Ref: 1409971 |

Location of cables in the shielding resumption collars on the back of the REV 800:



## 4.3.2.1. Robot RFV 2000 Europe



| XM terminal strip | Axis of movement                      |
|-------------------|---------------------------------------|
| Pin 1             | Motor phase U                         |
| Pin 2             | Motor phase V                         |
| Pin 3             | Motor phase W                         |
| Pin 4             | Ground                                |
| Pin 5             | Motor cable screen                    |
| Pin 6             | Thermal probe                         |
| Pin 7             | Thermal probe                         |
| Pin 8             | 10 Volt power supply to potentiometer |
| Pin 9             | Potentiometer signal 0-10 Volts       |
| Pin 10            | Potentiometer return 0 Volts          |
| Pin 11            | Ground                                |
| Pin 12            | Potentiometer cable screen            |

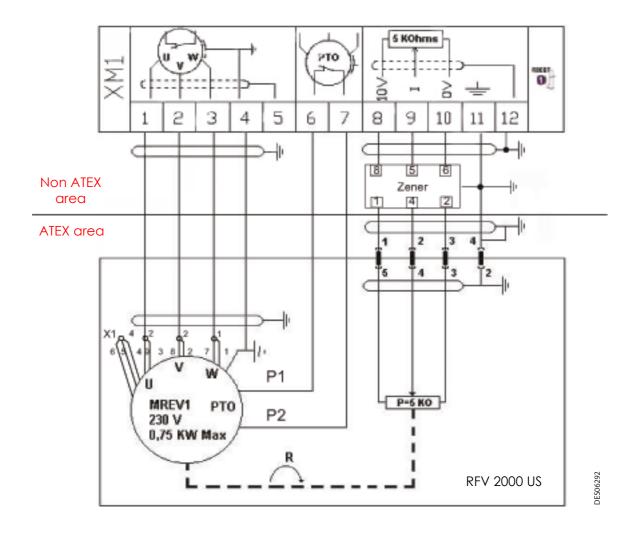
The speed converters are factory configured for a  $0.75~\mathrm{kW}$  /  $230~\mathrm{Volt}$  motor. The motor must therefore be 'delta' connected as follows:



The following motor characteristics are programmed into the speed converter:

| Rated motor voltage   | 230 V    |  |  |
|-----------------------|----------|--|--|
| Nominal motor current | 3.60 A   |  |  |
| Rated motor power     | 0.75 kW  |  |  |
| Rated motor Cos Phi   | 0.72     |  |  |
| Rated motor frequency | 50 Hz    |  |  |
| Nominal motor speed   | 1400 rpm |  |  |
| Rise time             | 0.3 sec  |  |  |
| Fall time             | 0.3 sec  |  |  |
| Switching frequency   | 4 kHz    |  |  |

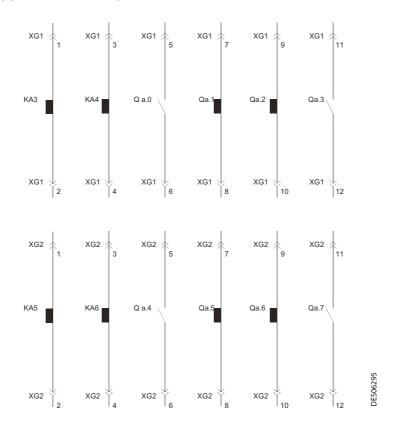
WARNING: the potentiometer must be connected via a Zener barrier protection device which is a certified (POT11) electric system.


The Zener barrier is installed at the rear of the control module REV 800 on a rail provided for this purpose.

Part number of the cable connecting the Zener barrier to the REV 800: 1411224.

Part number of the cable of the potentiometer: 1409971.

Part number of the Zener barrier: 110002447AT.


### 4.3.2.2. Robot RFV 2000 US



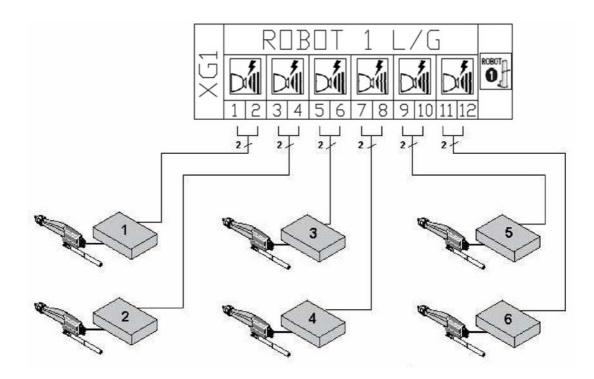
### 4.4. Connections to the Spray Triggers

## 4.4.1. Electrical Wiring Diagrams

Each robot is capable of controlling up to six independent spray triggers. The term 'spray trigger' refers to a signal used to control a spray module.



Example of connection of the CRN 457 control module.

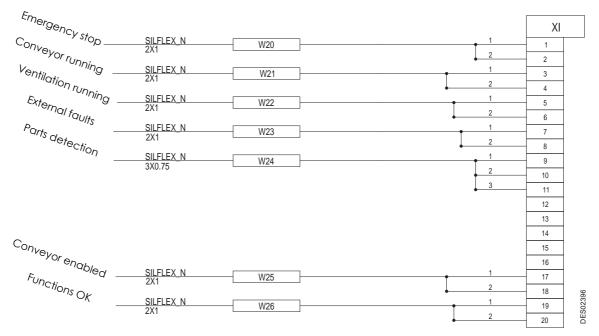



## Example of connection of the TCR control module:

| Spray trigger 1 | SILFLEX_N               | W1 | 1   | XG1 1 -, |
|-----------------|-------------------------|----|-----|----------|
| Spray trigger 2 | 2X1<br>SILFLEX_N<br>2X1 | W2 | 1 2 | 3        |
| Spray trigger 3 | SILFLEX_N<br>2X1        | W3 | 1 2 | 5        |
| Spray trigger 4 | SILFLEX_N<br>2X1        | W4 | 1 2 | 7 7      |
| Spray trigger 5 | SILFLEX_N<br>2X1        | W5 | 1 2 | 9        |
| Spray trigger 6 | SILFLEX_N<br>2X1        | W6 | 1 2 | 11 12    |

**SAMES KREMLIN** recommends a cable size of  $2 \times 1 \text{ mm}^2$  (P/N # E2LAAB100). The module uses a normally open floating contact to control the spray module. The triggers are controlled **individually**, according to the plans specified on the operator interface.

## 4.4.2. Control Module




The 6 triggers are controlled individually, according to the plans specified on the operator interface.

| XG terminal strip | Spray control |
|-------------------|---------------|
| Pin 1             | Trigger 1     |
| Pin 2             | Trigger 1     |
| Pin 3             | Trigger 2     |
| Pin 4             | Trigger 2     |
| Pin 5             | Trigger 3     |
| Pin 6             | Trigger 3     |
| Pin 7             | Trigger 4     |
| Pin 8             | Trigger 4     |
| Pin 9             | Trigger 5     |
| Pin 10            | Trigger 5     |
| Pin 11            | Trigger 6     |
| Pin 12            | Trigger 6     |

## 4.5. Interface to the Plant Control System

## 4.5.1. Electrical Wiring Diagrams



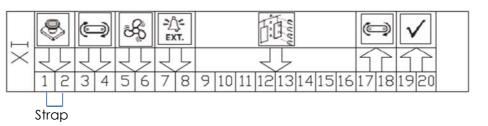
## **SAMES KREMLIN** recommends the following cables:

- 2 x 1 mm<sup>2</sup> (P/N # E2LAAB100)
   3 x 0.75 mm<sup>2</sup> (P/N # E2LDAC075)

Each output is a normally open floating contact.

| XI Termi- | Interface inputs and outputs   |  |
|-----------|--------------------------------|--|
| nal       | interiace inputs and outputs   |  |
| Pin 1     | Emergency stop                 |  |
| Pin 2     | Emergency stop                 |  |
| Pin 3     | Conveyor running (24 Volts)    |  |
| Pin 4     | Conveyor running input la.2    |  |
| Pin 5     | Ventilation running (24 Volts) |  |
| Pin 6     | Ventilation running input la.3 |  |
| Pin 7     | External fault (24 Volts)      |  |
| Pin 8     | External fault input la.4      |  |
| Pin 9     | Parts detection (24 Volts)     |  |
| Pin 10    | Parts detection (0 Volts)      |  |
| Pin 11    | Parts detection 1 input lb.0   |  |
| Pin 12    | Parts detection 2 input lb.1   |  |
| Pin 13    | Parts detection 3 input lb.2   |  |
| Pin 14    | Parts detection 4 input lb.3   |  |
| Pin 15    | Parts detection 5 input lb.4   |  |
| Pin 16    | Parts detection 6 input lb.5   |  |
| Pin 17    | Conveyor enabled output Qa.5   |  |
| Pin 18    | Conveyor enabled output        |  |
| Pin 19    | Module OK output Qa.4          |  |
| Pin 20    | Module OK output               |  |

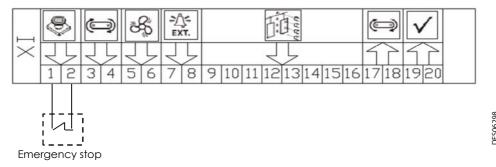
| Terminal<br>XC | Interface inputs and outputs      |
|----------------|-----------------------------------|
| Pin 1          | 24 Volts                          |
| Pin 2          | 0 Volt                            |
| Pin 3          | Conveyor encoder pulse input la.5 |
| Pin 4          | 24 Volts                          |
| Pin 5          | 0 Volt                            |
| Pin 6          |                                   |
| Pin 7          |                                   |
| Pin 8          |                                   |


### 4.5.2.1. Connection of an Additional Emergency Stop Switch



WARNING: If an additional emergency stop switch is not used, pins 1 and 2 on the XI terminal strip must be connected together.

The emergency stop is inserted in series in the control of the power supply relay. It allows to cut the power to the control module and the robots managed by it.


### Without emergency stop switch



With emergency stop switch

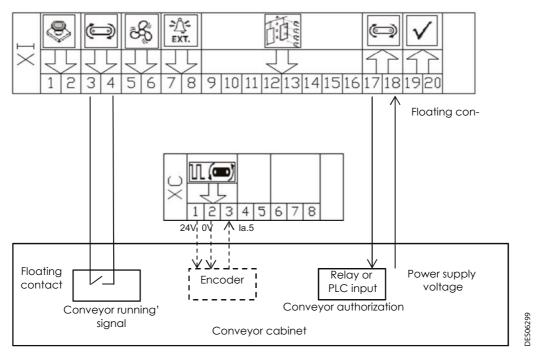
The emergency stop system should provide a normally closed floating contact (i.e. the contact opens when operated).

If an emergency stop signal is received, the REV 800 enters 'STOP' mode.



Message = Stop on the display.

4.5.2.2. Conveyor Enabled and Conveyor Running Signals - Input pulse encoder The module may be interfaced with the plant conveyor control system.


### Interactive system

In the event of a fault in the REV 800 module, the conveyor is stopped by the module until the fault is acknowledged and cleared.

If the conveyor is stopped, the REV 800 module goes into 'standby' mode with the display showing the 'no conveyor' fault message until the conveyor restarts automatically. Protocol

When the REV 800 is ready, it sends a 'conveyor enable' signal (floating contact between pins 17 and 18) to the conveyor control system.

The conveyor then starts and the conveyor control system returns a 'conveyor running' signal (floating contact between pins 3 and 4) to the REV 800.

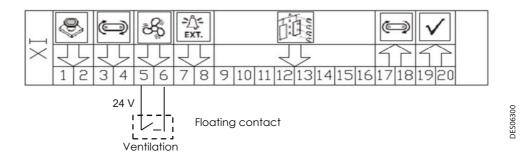


It is possible to take into account the actual speed of the conveyor by connecting a conveyor encoder pulse on pins 1-2 and 3 on the XC terminal strip.

Pins 1 and 2 are used for supplying an encoder or an inductive detector.

The pin 3 (input REV) receives the conveyor pulse signal.

#### Note:


If the REV 800 does not receive a 'conveyor running' running signal in automatic mode, it will display a 'no conveyor' error message. The spraying is the cut and the robot sweeping is stopped.

### 4.5.2.3. Ventilation Running Signal

The module may be interfaced with the plant ventilation control system.

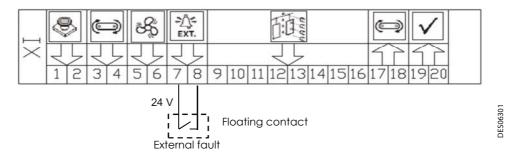
Spraying is only enabled if a 'booth ventilation' signal has been received (floating contact between pins 5 and 6).

If this signal is not present, a 'ventilation fault' message is displayed on the fault view. The sprayers are shut off and the 'conveyor enabled' signal changes state in order to stop the conveyor in automatic mode, the robot sweeping is also stopped.



### Note:

By default, the input is inverted in order to prevent a ventilation fault condition.


### 4.5.2.4. External Fault Signal

The control module may recognize an external fault signal from another module or cabinet in the plant.

The 'external fault' signal is applied to pins 7 and 8 in the form of a floating contact.

If an external fault is recognized, an 'external fault' message is displayed on the operator interface.

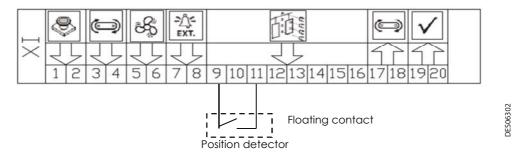
The oscillation of robots is also stopped and in automatic mode, the input " authorization conveyor " change state in order to stop the conveyor and the sprayers are shut off



### Remarks:

Several external fault signals (floating contact) from a number of modules or cabinets in the plant may be connected in series.

By default, the input is configured in order to prevent an external fault condition.

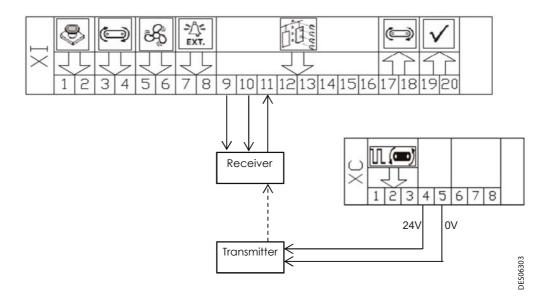

### 4.5.2.5. Parts Detection

### **Position detector**

The part is detected mechanically by the action of the part to be painted or the suspension arm supporting the part.

The position detector sends a 'part detected' signal via a normally open or normally closed floating contact between pins 9 and 11.

The input may be configured to suit the type of contact (normally open or normally closed).




### Photoelectric detector

The part is detected photelectrically when the beam is cut be either the part of the suspension arm supporting the part.

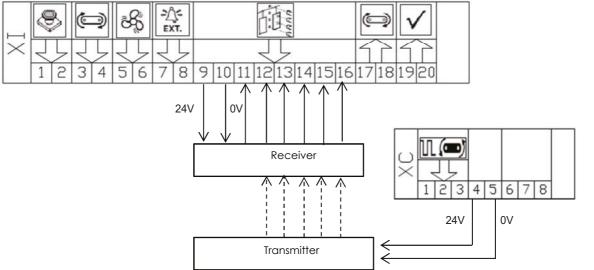
The photoelectric cell sends a 'part detected' signal to pin 11.

The input may be configured to suit the type of output from the detector (normally high or normally low).



### By photoelectric barrier or barrier sensing cells

The detection is done photoelectrically by cleavage of the beam with the work piece or the swing supporting the workpiece. The REV 800 module can handle up to 6 informations of altitude"sensing parts" on pins 11 to 16 of the terminal strip XI.

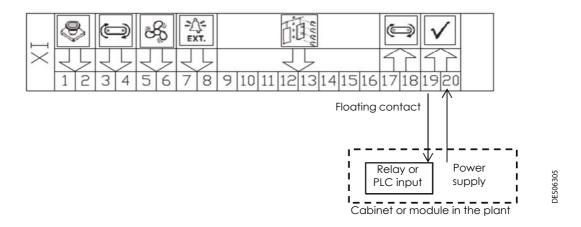

The inputs can be configured to suit the nature of the information (high or low).

The use of a barrier detection allows improved detection of parts compared to the photocells, the detection resolution is smaller on the sensing barrier (50 mm in general).

WARNING: the areas occultation configuration is not managed by the REV module. This setting is done by the programming software of the sensing barrier.

But the user must make a copy of this configuration in the REV800 module.

The photocell barrier is configurable in 6 detection areas and it sends 6 informations of "detection parts" on pins 11 to 16 of the terminal strip XI.




## 4.5.2.6. Control module OK signal

The control module provides a 'control module OK' signal in the form of a floating contact between pins 19 and 20.

This signal may be fed to another module cabinet in the plant via a relay or PLC input.

When the REV 800 is running, this floating contact is normally closed.



## 5. Spare parts

| Part Number | Description            | Qty | Sale<br>unit | Maintenance<br>Level for<br>spare parts (*) |
|-------------|------------------------|-----|--------------|---------------------------------------------|
| 910019970   | REV 800 Control module | -   | 1            | 3                                           |
| 110002447AT | Barrier Zener          | -   | 1            | 1                                           |
| 110000966   | Connector XP           | -   | 1            | 3                                           |
| E4PTRF590   | Connector XI           | -   | 1            | 3                                           |
| 110000967   | Connector XC           | -   | 1            | 3                                           |
| E4PTRF587   | Connector XM1/XM2      | -   | 1            | 3                                           |
| E4PTRF588   | Connector XG1/XG2      | -   | 1            | 3                                           |

(\*)

Level 1: Standard preventive maintenance

Level 2: Corrective maintenance Level 3: Exceptional maintenance